Dopamine DRD2 polymorphism alters reversal learning and associated neural activity.

نویسندگان

  • Gerhard Jocham
  • Tilmann A Klein
  • Jane Neumann
  • D Yves von Cramon
  • Martin Reuter
  • Markus Ullsperger
چکیده

In humans, presence of an A1 allele of the DRD2/ANKK1-TaqIa polymorphism is associated with reduced expression of dopamine (DA) D(2) receptors in the striatum. Recently, it was observed that carriers of the A1 allele (A1+ subjects) showed impaired learning from negative feedback in a reinforcement learning task. Here, using functional MRI (fMRI), we investigated carriers and noncarriers of the A1 allele while they performed a probabilistic reversal learning task. A1+ subjects showed subtle deficits in reversal learning. In particular, these deficits consisted of an impairment in sustaining the newly rewarded response after a reversal and in a generally decreased tendency to stick with a rewarded response. Both genetic groups showed increased fMRI signal in response to negative feedback in the rostral cingulate zone (RCZ) and anterior insula. Negative feedback that incurred a change in behavior additionally engaged the ventral striatum and a region of the midbrain consistent with the location of dopaminergic cell groups. The response of the RCZ to negative feedback increased as a function of preceding negative feedback. However, this graded response was not observed in the A1+ group. Furthermore, the A1+ group also showed diminished recruitment of the right ventral striatum and the right lateral orbitofrontal cortex (lOFC) during reversals. Together, these results suggest that a genetically driven reduction in DA D(2) receptors leads to deficient feedback integration in RCZ. This, in turn, was accompanied by impaired recruitment of the ventral striatum and the right lOFC during reversals, which might explain the behavioral differences between the genetic groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C957T polymorphism in the dopamine receptor D₂ gene modulates domain-general category learning.

Adaptive learning from reward and punishment is vital for human survival. Striatal and frontal dopaminergic activities are associated with adaptive learning. For example, the C957T single nucleotide polymorphism of the dopamine receptor D2 (DRD2) gene alters striatal D2 receptor availability and affects individuals' adaptive learning ability. Specifically, individuals with the T/T genotype, whi...

متن کامل

T polymorphism in the dopamine receptor D 2 ( DRD 2 ) gene modulates domain - general category learning ( Running head : DRD 2 , domain - general category learning )

Adaptive learning from reward and punishment is vital for human survival. Striatal and frontal dopaminergic activities are associated with adaptive learning. For example, the C957T single nucleotide polymorphism of the DRD2 gene alters striatal D2 receptor availability and affects individuals’ adaptive learning ability. Specifically, individuals with the T/T genotype, which is associated with h...

متن کامل

Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism

As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a...

متن کامل

Commonly-occurring polymorphisms in the COMT, DRD1 and DRD2 genes influence different aspects of motor sequence learning in humans

Performing sequences of movements is a ubiquitous skill that involves dopamine transmission. However, it is unclear which components of the dopamine system contribute to which aspects of motor sequence learning. Here we used a genetic approach to investigate the relationship between different components of the dopamine system and specific aspects of sequence learning in humans. In particular, w...

متن کامل

Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning.

What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Converse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2009